Поиск в базе сайта:
Томский политехнический университет и. А. Хворова материаловедение. Технология конструкционных материалов часть 1 icon

Томский политехнический университет и. А. Хворова материаловедение. Технология конструкционных материалов часть 1




НазваниеТомский политехнический университет и. А. Хворова материаловедение. Технология конструкционных материалов часть 1
страница1/5
Дата конвертации27.02.2013
Вес0.92 Mb.
КатегорияЛекция
  1   2   3   4   5

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
»


И.А. Хворова


МАТЕРИАЛОВЕДЕНИЕ. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ


Часть 1


Рекомендовано в качестве учебного пособия
Редакционно-издательским советом
Томского политехнического университета



Издательство

Томского политехнического университета

2011


УДК 620.22.(075.8)

ББК 30.36.я73

Х324


Хворова И.А.

Х324 Материаловедение. Технология конструкционных материалов: учебное пособие в 2-х ч. Часть 1 / И.А. Хворова; Национальный исследовательский Томский политехнический университет. − Томск: Изд-во Томского политехнического университета, 2011. – 74 с.


В первой части пособия рассматриваются основы металлургического и литейного производства, обработки металлов давлением и резанием, получения сварных соединений.

Предназначено для студентов, обучающихся по специальности 140502 «Котло- и реакторостроение» направления 140500 «Энергомашиностроение».

УДК 620.22.(075.8)

ББК 30.36.я73


Рецензенты

Доктор физико-математических наук,

старший научный сотрудник ИФПМ СО РАН
Е.Е. Дерюгин


Доктор физико-математических наук,

профессор кафедры физики ТГАСУ
^ Ю.П. Шаркеев


© ГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2011

© Хворова И.А., 2011

©
Обложка. Издательство Томского
политехнического университета, 2011

Лекция 1


Что изучает дисциплина «Материаловедение. Технология конструкционных материалов»


Материаловедение изучает различные конструкционные материалы, их состав, строение и свойства, а также способы изменения их свойств в процессе обработки.

Технология – это совокупность операций по изготовлению изделия или детали. Проще можно сказать: из чего, каким инструментом, на каком оборудовании и в какой последовательности изготовить нужное изделие. Сейчас все эти понятия часто обозначают английским выражением “know how” – «знать, как». В технологию входят особенности режима обработки, применение вспомогательных веществ (смазки, охлаждающие среды) и многое другое.

С


Технология

Новый материал


Новая технология

уществует взаимосвязь между двумя составными частями нашего курса: совершенствование технологии позволяет получить качественно новый материал, а новый материал дает новые возможности конструкторам и технологам, и возникает новая технология.


Конструкционные материалы предназначены для изготовления деталей и конструкций, работающих под механическими нагрузками. Основное требование к конструкционным материалам – не разрушаться и не деформироваться при эксплуатации. Кроме того, материалы должны быть экономичными (недорогими, недефицитными) и технологичными, т. е. из них должно быть технически возможно изготовить нужное изделие с минимальными затратами труда и энергии.

В современной технике используются следующие группы конструкционных материалов:

1) металлы и их сплавы;

2) полимеры (пластмассы);

3) керамика;

4) стекла;

5) композиционные материалы.

На современном этапе развития техники в наибольшей степени удовлетворяют требованиям быть прочными, надежными, долговечными – и одновременно технологичными и экономичными – металлы и сплавы. Композиционные материалы все шире используются в самых разных областях, но все же пока они дороги и технология их производства сложна. Поэтому до 80 % объема всех выпускаемых конструкционных материалов составляют металлы. В котло- и реакторостроении они являются основными материалами для машин и конструкций. Поэтому мы будем рассматривать технологию производства изделий из металлов и технологию получения самого металла.





^ Раздел I Основы металлургического производства


В земной коре металлы находятся в виде руд (горных пород с высоким содержанием соединений ценного металла). Только благородные металлы (золото, серебро, платина) встречаются в виде самородков. Для их извлечения из сопутствующих пород применяют физические методы, основанные на разной плотности. Активные металлы (железо, алюминий, титан, олово, цинк и др.) в природе встречаются только в виде соединений, из которых их извлекают различными химическими способами:

1) восстановлением неметаллами (железо восстанавливается углеродом, вольфрам – водородом);

2) восстановлением металлами (титан восстанавливают более активным магнием или бериллием);

3) электролизом растворов и расплавов (так получают алюминий и магний).

Природные руды зачастую бедные, поэтому перед выплавкой их обогащают. В цикле любого металлургического производства происходит постепенное повышение концентрации нужного металла:


обогащение


выплавка




РУДА

30 % металла




КОНЦЕНТРАТ

70 % металла



МЕТАЛЛ

100 %



пустая порода


шлаки (примеси)

газы

Итак, задача металлургического производства – восстановление металлов из оксидов и других соединений.

Наиболее значимыми в технике являются черные металлы: чугун и сталь. Их получением занимается черная металлургия.

Цветная металлургия получает медь, алюминий, титан, другие цветные металлы и сплавы на их основе. Руды цветных металлов беднее железных: в медной руде содержится от 1 до 5 % меди, в молибденовых – сотые доли процента Mo. Для их обогащения применяется больше операций; плавка идет в несколько этапов.


^ Структура металлургического производства


Предприятия черной металлургии базируются на месторождениях руд и коксующихся углей, а также энергетических комплексах (см. рис.1).

^ Сырьем для черной металлургии являются железная руда, кокс, флюсы.

Продукция черной металлургии: стальные и чугунные отливки (литые заготовки), стальной прокат (рельсы, балки, листы, проволока, трубы), чугун передельный и литейный (в чушках), ферросплавы.

Важнейший из этих продуктов – сталь, «хлеб промышленности».

Отсюда основная задача черной металлургии:

  1. получение чугуна из руды путем восстановления железа из оксидов; производится в доменной печи;

  2. получение стали из чугуна и скрапа (металлолома) путем окисления избытка примесей; производится в сталеплавильных агрегатах (конверторе, мартеновской печи и др.).




Рис. 1. Схема металлургического производства (чёрная металлургия)


^ Получение чугуна


Домна – вертикальная плавильная печь шахтного типа, работает по принципу противотока: шихта загружается сверху, проплавляется и опускается, а горячий воздух и газы поднимаются вверх (см. рис. 2). Шихтой называют все материалы, загружаемые в печь. В доменном производстве это руда, кокс и флюсы. Все эти материалы проходят предварительную обработку: дробление крупных кусков, спекание мелких, обогащение. В домну загружается не природная руда, а обогащенный концентрат, причем в виде кусков определенной величины (10-80 мм), полученных агломерацией (спеканием) или окатыванием (из мелких фракций увлажненной шихты делаются шарики диаметром 30 мм и обжигаются).

Домна вмещает до 7 тыс. т шихты (5 железнодорожных составов). Это печь непрерывного действия, она работает в течение 5-8 лет круглосуточно, без ремонта. Снаружи домна одета стальным кожухом толщиной 40-50 мм, шамотная кладка печи имеет толщину от 70 см в верхней части до 1,5 м в районе горна. Подогретое дутьё (воздух для горения топлива, обогащенный кислородом) подается из воздухонагревателей через фурмы. Температура дутья достигает 1200 °C, что позволяет экономить кокс и повышает производительность. У каждой домны есть несколько воздухонагревателей, которые поочередно работают то на нагрев кирпичной насадки отходящими газами (рис. 3), то на подогрев воздуха.

Кокс сгорает с выделением большого количества тепла: температура в заплечиках достигает 2000 °C. Продукты сгорания – газы CO и CO2 – отдают тепло шихте. На выходе их температура составляет всего 300 °C.

В домне идет косвенное (газами CO и H2) и прямое (твердым углеродом кокса) восстановление железа, последовательно от старших оксидов к младшим:

Fe2O3 → Fe3O4 → FeO → Fe.

Кроме того, восстанавливаются примеси – кремний, марганец, фосфор; железо активно растворяет углерод и серу. Сплав, насыщенный углеродом до ≈4 %, плавится, стекает в горн, и дальнейшее науглероживание становится невозможным: слой жидкого чугуна прикрыт сверху слоем жидкого шлака, состоящего из оксидов и более легкого, чем металл.

Выпуск чугуна и шлака производится периодически через чугунную и шлаковую лётки соответственно.

Сплав железа с углеродом, марганцем, кремнием, фосфором и серой называется доменным чугуном. Он подразделяется на литейный чугун, который разливают в слитки весом 45 кг (чушки) или получают из него отливки, и передельный чугун, который идет на передел в сталь. Передельный чугун из чугуновозных ковшей сливают в миксер – огнеупорную емкость, обогреваемую горючим газом, вместимостью до 2 тыс. т жидкого чугуна. В миксере происходит усреднение состава чугуна из разных плавок, что важно для правильной работы сталеплавильных агрегатов.

Чугун и доменные ферросплавы, применяемые для раскисления и легирования стали, – это основная продукция доменного производства, а шлак и доменный газ – побочная.

Технико-экономические показатели работы домны:

1) коэффициент использования полезного объема КИПО = V/P3/т],

где ^ V – полезный объем, P – суточная производительность;

2) удельный расход кокса K = A/P, где A – расход кокса в сутки.

Понятно, что чем меньше эти показатели, тем эффективнее работает доменная печь. У лучших печей оба эти показателя имеют величину ≈0,4.


Лекция 2


Получение стали


Исходные материалы для получения стали – передельный чугун и скрап (металлолом).

Состав чугуна: 4 % C, 1 % Mn, 1 % Si, 0,3 % P, ≤ 0,1 % S.

Состав стали 40: 0,4 % C, 0,5 % Mn, 0,3 % Si, ≤ 0,05 % P, ≤ 0,03 % S.

Следовательно, чтобы получить сталь, содержание всех примесей в чугуне надо уменьшить примерно в 10 раз. Для этого примеси окисляют и переводят в шлак.

Выплавку стали производят в сталеплавильных печах различной конструкции, ёмкости и производительности.


Агрегаты для выплавки стали

Самая крупная сталеплавильная печь – мартеновская (см. рис. 4). Эта пламенная регенеративная печь может вмещать до 900 т жидкой стали. Печь представляет собой ванну из огнеупорных материалов. Сверху имеется свод, в передней стенке расположены окна для завалки шихты, в нижней части задней стенки – летка для выпуска стали. В боковых стенах имеются головки для подачи топлива и отвода продуктов сгорания. Источником тепла является факел, в котором сгорает природный газ или мазут. Газы, образованные при горении, проходят через один из регенераторов (воздухонагревателей), отдавая тепло кирпичной насадке. Воздух для горения топлива подается через нагретый регенератор. Затем с помощью задвижки поток газов направляют так, чтобы остывший регенератор нагревался, а нагретый работал на подогрев дутья.

Для ускорения плавки через свод печи пропущены фурмы для вдувания кислорода.

Производительность печи оценивают величиной съема металла с 1 м2 пода. Этот показатель достигает 10 т/м2; более крупные печи с площадью пода до 100 м2 работают более производительно. Печь выдерживает от 400 до 600 плавок (примерно 8 месяцев), после этого ставится на ремонт. Продолжительность плавки в мартеновской печи от 6 до 12 часов. Выплавляют стали обыкновенного качества, углеродистые и легированные.

Доля мартеновской стали составляет около 50 % от всей выплавляемой в мире стали. В последние десятилетия эта доля снижается, так как новых мартеновских печей больше не строят.




Рис. 4. Сталеплавильные печи


^ Кислородный конвертор – второй по величине сталеплавильный агрегат. Он представляет собой грушевидный сосуд (реторту) из огнеупорного кирпича, покрытый снаружи стальным кожухом и подвешенный на опорах. Конвертор может поворачиваться на цапфах, наклоняясь для выпуска стали и шлака. Емкость конверторов – до 400 т жидкой стали, обычно 300 т. Размеры: высота до 9 м, диаметр – до 7 м.

В конверторе окисление имеющихся в чугуне примесей идет за счет продувки жидкого чугуна чистым кислородом (через фурму сверху). Химические реакции окисления протекают с выделением огромного количества теплоты, поэтому ванна очень быстро разогревается. Под фурмой температура расплава достигает 2400 °C. Плавка продолжается всего 40 минут: это самый высокопроизводительный сталеплавильный агрегат. В конверторах выплавляют только углеродистую и низколегированную сталь (содержание легирующих добавок не более 3 %). Слишком высокие температуры способствуют выгоранию ценных легирующих элементов, поэтому иногда легирование производят уже в ковше, после выпуска стали из конвертора. Доля конверторной стали растет; конверторный способ вытесняет мартеновский.

Электродуговая сталеплавильная печь имеет емкость до 300 т. Это камера из огнеупорного кирпича со съемным сводом. Для загрузки флюсов и легирующих элементов имеется окно; загрузка шихты производится сверху при снятом своде. Для выпуска стали печь имеет огнеупорный желоб. Она может наклоняться благодаря специальному механизму.

Тепло для химических реакций получается от горения трех электрических дуг между графитовыми электродами и шихтой. Печь питается трехфазным током с напряжением 600 В; сила тока до 10 кА. В электродуговой печи можно создать необходимую атмосферу (нейтральную, восстановительную или вакуум). Электрические параметры легко поддаются регулированию, поэтому в печи можно установить любую температуру.

В электропечах выплавляют высококачественные легированные стали. Плавка длится 6-7 часов; на тонну стали расходуется примерно 600 кВтч электроэнергии и около 10 кг электродов.

^ Электроиндукционная печь – самый маленький агрегат для выплавки стали. Ее емкость не превышает 25 т. Такие печи часто строят на машиностроительных предприятиях для переплавки собственных отходов.

Электроиндукционная печь – это огнеупорный тигель, помещенный в индуктор. Индуктор выполнен в виде витков медной трубки, через которую под давлением прокачивается вода для охлаждения. Индуктор подключен к генератору переменного тока высокой частоты (от 500 до 2000 Гц). Ток создает переменное электромагнитное поле. Под действием этого поля в кусках шихты, находящейся в тигле, наводятся вихревые токи, или токи Фуко. За счет сопротивления металла прохождению тока шихта разогревается и плавится; расплав интенсивно перемешивается.

В этой печи также можно создать любую атмосферу. Здесь не слишком высокая температура, поэтому нет угара легирующих элементов. Нет графитовых электродов, как в дуговой печи, поэтому лишний углерод не попадает в расплав. В индукционных печах выплавляют высококачественные легированные стали и сплавы, в том числе безуглеродистые.


Этапы выплавки стали

В любой сталеплавильной печи плавка происходит в несколько этапов:

1) плавление шихты и нагрев ванны; в этот период окисляются железо и примеси, и удаляется фосфор;

2) «кипение» ванны: лишний углерод удаляется в виде пузырьков CO, и кажется, что сталь кипит; в это же время идет удаление серы;

3) раскисление – восстановление железа из оксида FeO с помощью более активных элементов (марганца, кремния, алюминия);

4) легирование – добавление необходимых элементов для получения легированной стали; производится в конце плавки или прямо в ковше.

По степени раскисления стали подразделяют на спокойные (полностью раскисленные – ферромарганцем, ферросилицием и алюминием), кипящие (раскисленные только ферромарганцем, они «кипят» в изложнице – это выделяется оксид CO в виде пузырьков) и полуспокойные (раскислены марганцем и кремнием).

Слиток спокойной стали плотный, в верхней части имеется усадочная раковина. В слитке кипящей стали остаются пузырьки газа, усадочной раковины нет. Эта сталь не содержит неметаллических включений и более пластична, так как в ней меньше кремния.


Разливка стали

Выплавленную сталь выпускают в разливочный ковш и разливают в изложницы (чугунные формы) для получения слитков нужного веса и формы. Используется стопорный ковш. Изложницы заполняются сверху или снизу (сифонная разливка). При сифонной разливке одновременно заполняются сразу несколько изложниц. Потери металла в этом случае больше, но качество слитка выше, так как заполнение формы расплавом идет спокойно, без брызг. Застывшие брызги образуют на поверхности слитка твердые частицы – «корольки», затрудняющие его дальнейшую обработку. Углеродистые стали обыкновенного качества разливают сверху, а легированные, качественные – сифоном.

Наиболее экономичным является способ непрерывной разливки стали (рис. 5). Металл из ковша выпускается в промежуточное разливочное устройство, а оттуда поступает в медный кристаллизатор. Кристаллизатор имеет двойные стенки, между которыми прокачивается вода, отводящая тепло от расплава. Проходя через отверстие кристаллизатора, расплавленный металл начинает затвердевать. На выходе частично затвердевший слиток захватывается тянущими роликами и направляется на дополнительное охлаждение водой из форсунок. Скорость вытягивания составляет примерно 1 м/мин. Окончательно затвердевший профиль разрезается на мерные куски с помощью ацетилен-кислородного резака.

Установки непрерывной разливки стали (УНРС) бывают радиального, горизонтального и вертикального типов (по направлению вытягивания слитка). Выход годного продукта при этом способе составляет до 98 %. Слиток имеет плотное, мелкозернистое строение. Может быть получено сечение любой формы: .


Повышение качества стали

Повысить качество стали означает уменьшить в ней количество вредных примесей: серы, фосфора и газов.

Способы повышения качества стали:

  1. ^ Обработка синтетическим шлаком в ковше. Расплавленный шлак специального состава заливается на дно ковша, затем туда выпускается сталь. Более тяжелый жидкий металл опускается на дно, а шлак всплывает, при этом его частички захватывают неметаллические включения и газовые пузырьки. Кроме того, компоненты шлака связывают серу.

  2. ^ Вакуумная дегазация в ковше (или при переливании в изложницу, в другой ковш, в промежуточном разливочном устройстве). При понижении давления над расплавом пузырьки газов поднимаются вверх и уносят с собой оксиды и другие неметаллические примеси.

  3. ^ Двойной переплав: электрошлаковый, вакуумно-дуговой, плазменно-дуговой и др. В каждом из этих способов слиток постепенно расплавляется, и расплав проходит по капле через жидкую среду (шлак) или вакуум. Сталь очищается от газов и неметаллических включений. Затем металл снова кристаллизуется. Двойному переплаву подвергают только легированные стали, особо высококачественные.


^ Внедоменное получение железа из руды


Это наиболее перспективное направление в развитии черной металлургии. Традиционный двойной передел нужно заменить более рациональным процессом. Причины:

  1. Запасы коксующихся углей истощаются.

  2. Два вспомогательных производства – получение агломерата и кокса – по капиталоемкости, сложности, вреду выбросов значительно превосходят основное – доменное производство.

  3. Необходимы перевозки сырья на все большие расстояния, к мощным металлургическим комплексам, вокруг которых запасы выработаны. (Только КМК и ЗСМК требуют 15 млн т руды в год.) При этом в металлургических центрах нарушена экология.

Выход: постепенная замена доменного и сталеплавильного производства прямым получением стали из руды; а затем – непрерывным металлургическим процессом руда – прокат.

Пока эта задача полностью не решена: есть установки для получения металлизованных окатышей из руды вне домны и есть способы непрерывной разливки и прокатки стали. Дело за «малым» – научиться производить непрерывную выплавку стали. Скорость химических реакций в существующих печах не позволяет это сделать.

Томская область имеет гигантские возможности стать центром добычи железорудного сырья, а возможно – и выплавки стали. Запасы Бакчарского месторождения оцениваются в 12 млрд т. Их хватит на 700 лет добычи. Предполагается разработка методом скважинной гидродобычи; размытая струей воды порода (пульпа) будет подаваться на металлургический завод по пульпопроводу.

Одна из успешно работающих установок для внедоменного получения железа – шахтная печь противотока (рис. 6). Печь имеет вид шахты, в которую сверху загружаются рудные окатыши. Верхняя часть печи – это зона восстановления. Она нагревается до 1100 °С. В нее подаются газы CO и H2 – продукты конверсии природного газа. Они восстанавливают железо из оксидов, входящих в состав окатышей. Нижняя часть печи – зона охлаждения, куда подается холодный воздух. На выходе из печи получается губчатое железо в виде металлизованных окатышей. Они содержат до 95 % железа, остальное – примеси (марганец, сера, фосфор). Из них в электропечах выплавляют сталь. В такой стали содержится до 0,2 % С.

Есть и другие способы внедоменного получения железа: восстановление в кипящем слое, в капсулах (в виде концентрических слоев) и др.

Лекция 3





  1   2   3   4   5

Похожие:




©fs.nashaucheba.ru НашаУчеба.РУ
При копировании материала укажите ссылку.
свазаться с администрацией