Поиск в базе сайта:
Модели, алгоритмы и программы, развивающие технологию 3D-моделирования нефтегазовых месторождений icon

Модели, алгоритмы и программы, развивающие технологию 3D-моделирования нефтегазовых месторождений




НазваниеМодели, алгоритмы и программы, развивающие технологию 3D-моделирования нефтегазовых месторождений
страница1/3
Захарова Алена Александровна
Дата конвертации02.12.2012
Вес0.49 Mb.
КатегорияАвтореферат
  1   2   3





На правах рукописи









Захарова Алена Александровна


Модели, алгоритмы и программы,
развивающие технологию 3D-моделирования
нефтегазовых месторождений



Специальность

05.13.01 – Системный анализ, управление и обработка информации

(в отрасли: промышленность)


АВТОРЕФЕРАТ

диссертации на соискание ученой степени
доктора технических наук



Томск – 2009

Работа выполнена в Томском политехническом университете


Научный консультант:

доктор технических наук, профессор,

^ Ямпольский Владимир Захарович




Официальные оппоненты:

доктор технических наук,

^ Костюченко Сергей Владимирович


доктор технических наук, профессор

Цой Евгений Борисович


доктор технических наук

Клименко Анатолий Яковлевич





Ведущая организация:

Институт вычислительной математики

и математической геофизики (ИВМиМГ)

Сибирского отделения Российской

академии наук (г. Новосибирск)



Защита состоится «24» марта 2010 г. в 15.00 часов на заседании Совета по защите докторских и кандидатских диссертаций Д 212.269.06 при Томском политехническом университете по адресу: г. Томск, ул. Советская, 84/3, ауд. 214.


С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета по адресу: 634034, г. Томск, ул. Белинского, 55.


Автореферат разослан « ___ » _______ 2009 г.



Ученый секретарь

Совета по защите докторских и кандидатских диссертаций,

кандидат технических наук





М. А. Сонькин 

^ ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность работы. Актуальность проблем, связанных с рациональным природопользованием, с повышением ресурсоэффективности имеет непреходящее значение для экономики России, особенно в такой стратегически важной области, как добыча углеводородного сырья. Поиск, разведка и разработка месторождения – это длительный и технологически сложный процесс, связанный с большими экономическими рисками, огромными информационными ресурсами, сопровождаемый проектными решениями на основе современных информационных технологий под строгим государственным контролем. Этим определяется важность комплексного подхода к решению проблемы информационного обеспечения и сопровождения всего жизненного цикла месторождения.

Существующие технологии и программные средства достигли высокого уровня и основываются на сложном математическом аппарате. Вместе с тем сохраняется актуальность и необходимость автоматизации ряда процессов и задач моделирования, создания методов, моделей и алгоритмов для более оперативной и/или эффективной оценки как исходных данных, так и результатов моделирования, применения комплексного подхода при интеграции вычислительных и информационных ресурсов.

В создание и совершенствование методов моделирования разработки нефтяных месторождений внесли большой вклад отечественные ученые:
В.Е. Андреев, К.С. Баймухаметов, П.М. Белаш, Ю.П. Борисов, Д.В. Булыгин, Ю.Е. Батурин, А.В. Гавура, А.Т. Горбунов, Р.Н. Дияшев, В.И. Дзюба,
Ю.В. Желтов, С.Н. Закиров, М.М. Иванова, Г.С. Камбаров, А.В. Копытов,
С.В. Костюченко, А.П. Крылов, Б.И. Леви, Е.В. Лозин, В.Д. Лысенко,
М.М. Максимов, И.Т. Мищенко, А.Х. Пергамент, Б.М. Саттаров и многие другие. Большой вклад внесли и зарубежные ученые: A. Settari, D.L. Katz,
G.R. King, I.H. Kassam, I.V. Vogel, K. Aziz, M.C. Leverett, T. Ertekin и др.

В настоящее время в мировой практике нефтяного инжиниринга созданы технологические линейки программных продуктов, обеспечивающие создание геологических, гидродинамических 3D-моделей и расчета прогнозных показателей на их основе, таких ведущих зарубежных компаний, как Schlumberger, Roxar, Landmark, а также ряд российских разработок.

Однако они не в полной мере адаптированы к российским условиям, поэтому требования российского законодательства и регламентирующих и нормативных документов создания на их основе проектных документов связаны с избыточной трудоемкостью.

Известно, что оперативность принятия решений по управлению разработкой нефтегазовых месторождений снижает технологические и финансовые риски, а несвоевременность формирования проектных документов приводит к нарушению законодательных норм и правил.

В данном диссертационном исследовании рассматриваются вопросы повышения эффективности информационной технологии для моделирования процесса разработки нефтегазовых месторождений с применением цифровых
3D-геологических и 3D-гидродинамических моделей и связанных с ними процессов сбора, анализа данных, подсчета запасов углеводородного сырья, а также создания полного набора проектных документов.


^ Цель работы: Создание моделей, алгоритмов и программных средств, развивающих информационную технологию 3D-моделирования нефтегазовых месторождений, обеспечивающих снижение ее ресурсоемкости.

Для достижения цели исследования поставлены и решены следующие задачи:

  1. Выполнен анализ эффективности существующих информационных технологий и базовых программных средств моделирования месторождений нефти и газа.

  2. Проведена оценка ресурсоемкости информационной технологии и временных затрат для 3D-моделирования при формировании проектных решений.

  3. Осуществлено развитие модельного, алгоритмического и программного обеспечения геолого-гидродинамического моделирования нефтегазовых месторождений.

  4. Разработаны новые алгоритмические и программные средства, обеспечивающие:

  • автоматизацию процедур обработки геолого-технологической информации, а также создание трехмерных цифровых геологических и гидродинамических моделей месторождений нефти и газа;

  • статистический и пространственный анализ данных о месторождении для повышения эффективности принятия проектных решений;

  • создание мобильного ПО, замещающего трудоемкие и ресурсоемкие элементы информационной технологии, с целью организации «полевых» рабочих мест.

Проведена апробация, осуществлено внедрение результатов исследований и разработок в практику моделирования реальных геологических объектов, формирования проектных документов.


^ Методы исследования. Для решения поставленных задач в работе используются методы системного анализа, теория принятия решений, методы обработки, анализа и визуализации информации, методы математического моделирования, экспертных оценок, объектно-ориентированного проектирования и программирования.


^ Научная новизна. В диссертационной работе на основании комплексного анализа состояния проблемы предложены и разработаны новые модели, методики и алгоритмы, развивающие технологию 3D-моделирования нефтегазовых месторождений.

Научной новизной обладают следующие основные результаты:

  1. Разработанные новые модели 3D-геологического и 3D-гидродинамического моделирования нефтегазовых месторождений, снижающие ресурсоемкость технологии моделирования и проектирования и созданные с учетом сформулированных концептуальных основ технологии 3D-моделирования.

  2. Предложенные новые методики: оценки ресурсоемкости процессов проектирования на основе геологического и гидродинамического моделирования в соответствии со сформулированными критериями, тематического картографирования, оценки коэффициентов охвата объекта разработкой и корреляционных оценок однородности для пространственно-статистического анализа 3D-цифровых моделей месторождений. Методики сокращают сроки моделирования, анализа данных и формирования проектных решений, существенно снижая ресурсоемкость технологии.

  3. Предложенный новый алгоритм прогноза фильтрационно-емкостных свойств продуктивного пласта на основе оценки напряженности породы, обеспечивающий снижение затрат на формирование программных технологических линеек и повышение точности расчетов.

  4. Созданные новые алгоритмы выбора варианта ремасштабирования при переходе от геологической к гидродинамической модели, сохраняющие точность модели при уменьшении числа ячеек.

  5. Разработанный алгоритм моделирования процессов влагопереноса в геологической среде на основе метода Монте-Карло и моделирующий контур распространения закачиваемого в поглощающую скважину флюида.


^ Теоретическая значимость работы заключается в решении важной научно-технической проблемы развития теории и практики 3D-цифрового геолого-гидродинамического моделирования. Предложенные в диссертационной работе и программно реализованные новые модели и алгоритмы (прогноза пьезопроводности и гидропроводности пласта, пре- и постпроцессинга, экспресс-оценки коэффициента охвата объекта разработкой, ремасштабирования, моделирования закачки флюида, оценки ресурсоемкости процесса) дополняют и развивают базовые программные линейки, используемые в нефтяной промышленности, составляющие основу информационной технологии моделирования нефтегазовых месторождений, повышают ее мобильность и ресурсоэффективность.


^ Практическая значимость работы. Разработанные модели, алгоритмы и программное обеспечение нашли практическое применение при выполнении многих проектов разработки реальных нефтегазовых месторождений для построения 3D-геологических и 3D-гидродинамических моделей, а также при обосновании проектных решений по подсчету запасов, пробной эксплуатации, проектам разработки месторождений и т.п., которые прошли экспертизу соответствующих научно-технических советов нефтегазовых компаний, а также государственных комиссий по запасам (ГКЗ) и разработке (ЦКР) и переданы заказчикам для практического использования.

Программное обеспечение функционирует под управлением операционной системы Windows 2000 и выше. Объем исходного кода ПО на языке Object Pascal составляет более 5 Мб.

Созданное по результатам исследований методическое и программное обеспечение также используется преподавателями и студентами Томского политехнического университета (ТПУ) в учебном процессе для выполнения научно-исследовательских, курсовых и выпускных квалификационных работ инженеров и магистров, а также при изучении факультативных дисциплин. Создана и реализуется программа повышения квалификации и дополнительной подготовки преподавателей ТПУ.


^ Основные положения, выносимые на защиту:

  1. Разработанные модели процессов 3D-геологического и 3D-гидродинамического моделирования позволяют формировать эффективные технологические линейки программных продуктов и формулировать задачи развития технологии моделирования.

  2. Методики оценки ресурсоемкости технологии моделирования и предложенные принципы ее формирования оценивают трудоемкость и затратность проектов, связанных с моделированием нефтегазовых месторождений, минимизируют затраты по приобретению и сопровождению линеек ПО.

  3. Методики и алгоритмы обработки данных в рамках пре- и постпроцессинга повышают адекватность моделей, значительно сокращают время, затрачиваемое на геологогидродинамическое моделирование, за счет уменьшения числа реализаций моделей и прогнозных решений на их основе.

  4. Реализованный метод прогноза пьезопроводности и гидропроводности пласта позволяет осуществлять моделирование фильтрационно-емкостных свойств продуктивного пласта в условиях слабой изученности.

  5. Созданное программное обеспечение для визуализации геофизической информации, автоматизации формирования вариантов апскейлинга 3D-геологических моделей, определения параметра J-функции для распределения водонасыщенности, автоматизации формирования систем расстановки скважин значительно сокращает сроки моделирования и, как следствие, сроки формирования проектной документации, повышая их качество.

  6. Предложенный стохастический алгоритм моделирования закачки жидкости в глубинный пласт обеспечивает гидродинамическое моделирование указанного процесса.

  7. Созданное алгоритмическое и программное обеспечение дополняет и/или замещает базовое ПО, развивая технологию моделирования нефтегазовых месторождений, в том числе при формировании соответствующей проектной документации.


^ Реализация результатов и их внедрение. Разработанные модели, алгоритмы и программные средства протестированы и внедрены:

  1. В Томском отделении Сибирского научно-исследовательского института геологии, геофизики и минерального сырья.

  2. В ООО «Сибнефтегазинновация».

  3. В ООО «Стимул-Т».

  4. В Институте «Кибернетический центр» Томского политехнического университета.

Полученные результаты исследований использовались при выполнении ряда НИР, в процессе создания 37 проектных документов для организаций и компаний:

  1. Томское отделение Сибирского научно-исследовательского института геологии, геофизики и минерального сырья.

  2. ООО «Сибнефтегазинновация».

  3. ОАО «ТомскНИПИнефть ВНК».

  4. ООО «НК «Роснефть-НТЦ»».

  5. ООО «Альянснефтегаз».

  6. ООО «Норд Империал».

  7. ООО «Стимул-Т».

На разработки, выполненные по результатам диссертации, получены пять свидетельств о регистрации программ для ЭВМ, выданные Федеральной службой по интеллектуальной собственности, патентам и товарным знакам.


Публикации. Результаты диссертации опубликованы в 50 печатных работах (из них 9 в изданиях, рекомендованных ВАК для опубликования результатов докторских диссертаций).


^ Апробация работы. Основные результаты диссертационной работы докладывались и обсуждались на 19 российских и международных научных конференциях, семинарах и совещаниях различного уровня, среди которых можно отметить следующие:

  • Научно-методический семинар «Применение ГИС-технологий в геокартировании», Томск, 1999 г.

  • Международная научно-практическая конференция «Ашировские чтения», Самара, 2004 г.

  • Всероссийская научно-практическая конференция «Теоретические проблемы экономической безопасности России в XXI веке», Томск, 2004 г.

  • Научно-практическая конференция «Проблемы и перспективы развития минерально-сырьевого комплекса и производительных сил Томской области», Томск, 2004 г.

  • Межрегиональный семинар «Информационные технологии в геологии и нефтедобыче» в рамках V специализированной выставки-конгресса с международным участием НЕФТЬ И ГАЗ-2004.

  • Научно-техническая конференция «Приоритетные направления развития науки и технологий», 2007, 2008.

  • VIII Международная научно-техническая практическая конференция «Средства и системы автоматизации», Томск, 2007.

  • Ямальский газовый форум, научно-практическая конференция «Проблемы развития и функционирования топливно-энергетического комплекса в приполярных регионах России», Новый Уренгой, 2009.

Личный вклад:

  1. Постановка задач исследования и апробация результатов выполнены автором совместно с В.З. Ямпольским.

  2. Описание моделей 3D-геологического и гидродинамического моделирования и моделей развития указанных процессов предложены автором.

  3. Методики оценки ресурсоемкости технологии моделирования, концептуальные основы технологии сформулированы и предложены автором.

  4. Методики и алгоритмы пре- и постпроцессинга предложены и реализованы автором.

  5. Метод прогноза пьезопроводности и гидропроводности на основе оценки напряженности продуктивного пласта предложены В.Е. Пешковым,
    О.В. Крыловым, реализующий метод ПО «Баланс-Гидродинамик» и апробация выполнены автором совместно с О.В. Крыловым.

  6. Проектирование и реализация ПО «Logger», «Correlation», «GMUpscale», «J-function», «WellSpacing» проведены под руководством автора совместно с М.А. Ивановым, А.С. Силантьевым и Ю.А. Недоспасовой.

  7. Проектирование и реализация ПО «GP-Storage» выполнены совместно с А.В. Мозжеловым.

  8. Алгоритм стохастического моделирования гидрогеологических процессов разработан автором. Постановки задачи исследования эффективности метода Монте-Карло и предложенного на его основе алгоритма сделаны совместно с Н.Г. Марковым. Результаты этого исследования, разработка, тестирование и апробация алгоритмического и программного обеспечения ПО «Mapper3D» выполнены автором.

  9. Построение 3D-геологических и 3D-гидродинамических моделей, выполнение 37 НИР и по их результатам проектных документов выполнено под руководством и при участии автора.


^ Структура и объем работы. Диссертационная работа включает: введение, четыре главы, заключение, список использованных источников, состоящий из 215 наименований, 9 приложений. Общий объем диссертации составляет 308 страниц машинописного текста. Работа содержит 121 рисунок и 14 таблиц.


^ ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность работы в данном научном направлении, формулируются цель и задачи исследования, отмечен личный вклад автора и апробация результатов исследований.


В первой главе с системных позиций описан жизненный цикл месторождений (ЖЦМ) и показана роль проектных решений при сопровождении разведки и разработки нефтегазовых месторождений. Определена значимость 3D-геологического и гидродинамического моделирования при управлении разработкой, принятии решений и создании проектных документов (рис.1). Отмечена особая важность создания и сопровождения постоянно действующих геолого-технологических моделей и необходимость применения при этом 3D-моделирования.



где ГРР – геологоразведочные работы, ТЭО – технико-экономическое обоснование, ТС ОПР – технологическая схема опытно-промышленных работ, ПР – проект разработки, КИН – коэффициент извлечения нефти

Рис. 1. Связь проектно-технологических решений,
стадий ЖЦМ и этапов моделирования

Проведен анализ методов, алгоритмов и программных систем, применяемых при моделировании нефтегазовых месторождений. По результатам анализа выделены базовые программные средства, обеспечивающие технологию моделирования месторождений. Несмотря на то, что ведущими отечественными компаниями и организациями, такими, как ОАО «ЦГЭ», ОАО «Пангея», РГУ нефти и газа им. Губкина, МГУ им. Ломоносова, ИПМ им. Келдыша, ООО «ПетроАльянс», ЗАО «Тюменский институт нефти и газа», ИМП им. Келдыша, группа компаний Таймзикс и др., в настоящее время создан ряд программных продуктов и систем, лидерами в данной области остаются такие компании, как Schlumberger Information Solutions, Landmark Graphics Corporation и Roxar Software Solutions.

В работе представлены технологические линейки программных продуктов, комплексно обеспечивающие процесс моделирования. Проведен сравнительный анализ их функциональности, выявлены основные преимущества и недостатки использования линеек отечественного и зарубежного программного обеспечения (ПО).

В первой главе также приведены математические методы, применяемые при геологическом и гидродинамическом моделировании. Большинство из них реализованы в современных программных системах и комплексах. Так, базовое ПО всех представленных в главе I линеек ведущих мировых компаний Schlumberger, Landmark Roxar и российских разработчиков ПО реализует методы (стохастические и детерминированные) восстановления двух и трехмерных параметров при геологическом моделировании, такие, как средневзвешенная интерполяция, триангуляция, Кригинг, Монте-Карло и др. Для гидродинамического моделирования в рамках ПО перечисленных компаний используются метод материального баланса, в зависимости от вида симулятора (ПО для расчета фильтрации в ячейках), системы дифференциальных уравнения для двух- и трехфазной фильтрации флюидов в нефтегазовых пластах. Решения соответствующих задач реализованы при помощи метода конечных элементов или метода конечных разностей.

По результатам анализа и оценки выявлены и сформулированы проблемы применения упомянутого программного обеспечения для геолого-гидродинамического моделирования нефтегазовых месторождений и изложены пути их решения, а именно, предложено:

  1. Формирование конфигураций технологических линеек ПО геолого-гидродинамического моделирования при выполнении проектных решений, минимизирующих затраты на приобретение оборудования и сокращающих трудозатраты на моделирование.

  2. Разработка алгоритмических и программных средств для технологии моделирования, обеспечивающих:

  • автоматизацию процедур обработки геолого-технологической информации, а также создание трехмерных цифровых геологических и гидродинамических моделей месторождений нефти и газа, обоснование на их основе прогнозных решений;

  • дополнение существующих программно-технологических линеек с целью расширения их функциональных и/или улучшения технических характеристик;

  • развитие средств статистического и пространственного анализа для повышения эффективности принятия экспертных решений, повышение качества моделирования и проектирования;

  • разработку мобильных программных средств, замещающих трудоемкие и ресурсоемкие элементы информационной технологии, организацию тем самым «полевых» рабочих мест.

Тестирование созданных алгоритмических и программных средств на реальных данных нефтегазовых месторождений.

Апробация и внедрение результатов исследований и разработок в практику моделирования реальных геологических объектов и формирование проектных документов.


Во второй главе описаны модели процессов геологического и гидродинамического моделирования, анализ которых позволил сформулировать основные критерии, по которым оценивается эффективность проектного решения и всего процесса моделирования, а именно:

  • Оперативность получения реализаций модели и на их основе проектного документа, т.е. затрачиваемое время.

  • Стоимость создания проектных решений и моделирования, складывающаяся из затрат на оплату труда специалистов, стоимости применяемых программных средств и затрат на их сопровождение.

  • Качество выбранной реализации, наиболее адекватной по результатам анализа большего числа реализаций либо на основании высококвалифицированного экспертного решения.

Предложена методика оценки временных затрат на создание проектного решения. Суммарная оценка ^ Т складывается следующим образом

Т=Т(GM)+ Т(GDM)+ Т(PTD),

где Т(GM), Т(GDM) и Т(PTD) соответственно время, затрачиваемое на геологическое, гидродинамическое моделирование и составление проектной документации;

Т(PTD)=1,5х(1+k),

где k – коэффициент, характеризующий сложность PTD; х =, хє{1,2} – простой объект, хє{2,4} – средней сложности, хє{4,6} – сложный объект подсчета или разработки.

Сложность моделирования зависит не только от геологической сложности объекта, но и от степени его изученности, которую предложено оценивать следующим образом.

Сформирован перечень основных исходных данных и введены соответствующие параметры, оценивающие их объем:

^ 1. Сейсмические исследования. kS – коэффициент, характеризующий в зависимости от вида (2D или 3D-съемка) и плотности сейсмических исследований влияние указанного вида исследований на точность модели.

^ 2. Геофизические исследования скважин (ГИС). kГИС – коэффициент, отвечающий за полноту исследований (kГИС=0,5, если ПГИС – промыслово-геофизические, kГИС=1, если полный комплекс ГИС), а также характеризующий влияние на точность оценки модели в зависимости от плотности ГИС (количество исследованных скважин на кв. км) и площади объекта (залежи, месторождения или геологического участка).

^ 3. Наличие и количество проб флюидов (нефти, газа, воды) и исследования керна. kФ1 – коэффициент, отвечающий за полноту исследований свойств нефти, kФ2 –за полноту исследований свойств газа, kФ3 – конденсата, kФ4 – воды. Тогда kФ – комплексный коэффициент, оценивающий степень изученности флюидов и учитывающий перечисленные составляющие.

4. ^ Исследования на образцах керна. kК1 – коэффициент, характеризующий полноту исследований фильтрационно-емкостных свойств пород (процент выноса керна), kК 2 – капилляро- и порометрии, kК 3 – относительные фазовые проницаемости, kК 4 – коэффициент вытеснения (Квыт).

^ 5. Гидродинамические испытания (ГДИ) скважин на различных режимах. kГДИ – коэффициент, характеризующий полноту (количество испытаний на скважину) и характер ГДИ.

^ 6. История разработки. kМЭР – коэффициент, характеризующий срок разработки и объемы эксплуатации месторождения (количество добывающих и нагнетательных скважин).

Геологические условия (kГ) также влияют на точность моделей. Так kГ1 – коэффициент, характеризующий сложность объекта (месторождения) и складывается из оценки таких параметров, как расчлененность, количество продуктивных пластов, состав флюида, наличие тектонических нарушений, региональная изученность аналогичных коллекторов. Значение коэффициента kГ2 характеризует величину объекта по классификации «малое»–«среднее»–«большое» месторождение в зависимости от площади и количества извлекаемых запасов в соответствии с методическими указаниями по подсчету запасов.

Таким образом, степень изученности моделей k – это функция от следующих параметров:

k = f(kS,kГИС,kФ,kГДИ, kк,kМЭР, kГ).

Рассмотрены значения перечисленных выше коэффициентов, определяющих точность геологических и гидродинамических моделей.

Значение оценочного коэффициента kГИС определяется качеством и объемом исследований. «Ценность» промыслово-геофизических исследований можно условно приравнять к ½ полного комплекса ГИС. Таким образом kГИС можно принять показателем, обратным плотности. При этом расчет плотности сети скважин, охваченных ГИС, рассчитывается путем деления площади участка/залежи (S) на сумму числа скважин (n1), в которых выполнен полный комплекс ГИС, и половины числа скважин, где выполнены только ПГИ (n2), т.е. S/(n1+n2/2).

Сложность месторождения определяется также количеством фаз (составляющих флюид – смесь пластовой воды и углеводородных компонентов, залегающих на месторождении). Так, kФ можно представить как



При этом,





Исследования на образцах керна оценим при помощи коэффициента kк:



где 

ГДИ, как отмечалось выше, выполняются как в открытом стволе (ИП), так и в интервале перфорации. Если взять за единицу второй вид ГДИ, то ИП можно считать 0,5 от первого. При этом на скважинах могут выполняться многократные ГДИ (ni), а фонд скважин n. Тогда коэффициент достоверности по ГДИ можно рассчитать следующим образом:



где



В среднем срок разработки месторождения считается равным 25 годам, поэтому можно принять kэксп=0,04t, где t – текущий срок разработки оцениваемого объекта.

Пусть kГ складывается из произведения kГ1 и kГ2. Если kГ1 – коэффициент характеризующий сложность объекта (месторождения), то в соответствии с методическими указаниями по классификации запасов его можно классифицировать по трем категориям (простое kГ1=1, среднее kГ1=0,75, сложное kГ1=0,5). Значение коэффициента kГ2 характеризует величину объекта по классификации «малое»–«среднее»–«большое» (соответственно kГ2=1, kГ2=0,75, kГ2=0,5) месторождение в зависимости от площади и количества извлекаемых запасов в соответствии с методическими указаниями по подсчету запасов.

Таким образом, коэффициент, определяющий степень изученности RG и RGD, можно определить как среднеарифметическое значение вышеперечисленных коэффициентов, пронормированное вектором коэффициентов, отвечающих за значимость параметров С={с1, … , с5}.

К числу перечисленных в начале раздела критериев относится и стоимость разработки моделей и проектной документации. Значение данного критерия формируется в зависимости от уровня цен на рынке, изменения определяются уровнем инфляции и другими процессами, которые происходят в экономике государства. Таким образом, оценку проекта по данному критерию можно представить как функцию f(kф,kГ), где kф – коэффициент, характеризующий финансовую стабильность, уровень цен и другие отягощающие проект экономические аспекты.

Предложенные методики позволяют оценивать сложность проектного решения и трудоемкость моделирования. Повышение эффективности моделирования возможно за счет расширения функциональных возможностей информационной технологии и реализованных в ней моделей процессов.

По результатам исследований предложено развитие моделей геологического и гидродинамического моделирования.

^ Геологическое моделирование (GM)

На входе процесса имеем исходный набор геологической и/или технологической информации IG, на выходе – множество описаний  (множество реализаций геологической модели) размерностью n.

Обозначим через FG преобразование исходного описания в конечное:

.

Конечное описание RGkÎRG, являющееся реализацией геологической модели становится основой для выполнения проекта.

Преобразование FG представляет собой множество последовательно выполняемых процедур по обработке, визуализации, анализу данных с последующим расчетом множества реализаций геологической модели с помощью специализированного ПО (представленного ранее и именуемого базовым). При этом разработчиком выполняется сбор исходных данных DG, выбор из числа n реализаций удовлетворяющего решения RGk и создание непосредственно проектного документа PT из множества проектных документов Р.

Повышение эффективности моделирования достигается посредством создания и использования дополнительного ПО и, таким образом, появления в моделях преобразования Fss, описывающего работу библиотеки дополнительных функций на всех этапах моделирования. Так, в модели процесса GM предлагается применение дополнительных или замещающих преобразований при обработке исходного набора геолого-технологической информации, формировании реализаций RG, выборе итоговой реализации и формировании проектного документа PT (рис. 2).



Рис. 2. Модель процесса геологического моделирования

  1   2   3

Похожие:




©fs.nashaucheba.ru НашаУчеба.РУ
При копировании материала укажите ссылку.
свазаться с администрацией